Strong-Cut Enumerative procedure for Extreme point Mathematical Programming Problems

نویسندگان

  • M. C. Puri
  • Kanti Swarup
چکیده

subject to A X = b and that,X is an extreme point of DX=d, X>O, is developed. The procedure will avoid the investigation of many of the extreme points of DX = d, X > 0 and also alternative optimas of different best extreme points of DX = d, X >_ 0 will not be needed. The algorithm is expected to work very efficiently. Zusammenfassung: In dieser Arbeit "Strong-Cut Enumerative Procedure for Extrem Point Mathematical Programming Problem" wird ein sehr effizientes enumeratives Verfahren zur L6sung des Problems Max{cx[Ax=b; xExtremzahlvonDx=d, x>0 entwickelt. Extrempunkte von D x = d, x > 0 werden in systematischer Weise abgesucht, bis Zul~issig-keit in A x = b erreicht ist. Die dabei benutzten Kriterien vermeiden die Untersuchung vieler nicht-optimaler Extrempunkte und die Bestimmung alternativer Optimalpunkte yon Dx = d, x >_ O.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme point linear fractional functional programming

This paper deals with the optimization of the ratio of two linear functions subject to a set of linear constraints with the additional restriction that the optimal solution is to be an extreme point of another convex polyhedron. In this paper, an enumerative procedure for solving such type of problems is developed. For an illustration, a numerical example is also provided.

متن کامل

An efficient modified neural network for solving nonlinear programming problems with hybrid constraints

This paper presents ‎‎the optimization techniques for solving‎‎ convex programming problems with hybrid constraints‎.‎ According to the saddle point theorem‎, ‎optimization theory‎, ‎convex analysis theory‎, ‎Lyapunov stability theory and LaSalle‎‎invariance principle‎,‎ a neural network model is constructed‎.‎ The equilibrium point of the proposed model is proved to be equivalent to the optima...

متن کامل

Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or nonlinear constraints. In ...

متن کامل

Semidefinite programming in combinatorial optimization

We discuss the use of semidefinite programming for combinatorial optimization problems. The main topics covered include (i) the Lovfisz theta function and its applications to stable sets, perfect graphs, and coding theory. (it) the automatic generation of strong valid inequalities, (iii) the maximum cut problem and related problems, and (iv) the embedding of finite metric spaces and its relatio...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zeitschr. für OR

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1973